
1

UNIX essentials (hands-on)

• the directory tree
• running programs
• the shell (using the T-shell)

→ command line processing
→ special characters
→ command types
→ shell variables
→ environment variables
→ wildcards
→ shell scripts
→ shell commands
→ pipes and redirection

• OS commands
• special files

2

• The Directory Tree
→ directories contain files and/or directories
→ / : means either the root directory, or a directory separator

• consider /home/user/AFNI_data1 user/suma_demo
→ an "absolute" pathname begins with '/', a "relative" pathname does not

• a relative pathname depends on where you start from
• in the directories above, note which is a relative pathname

→ every directory has a parent directory
• the relative pathname for the parent directory is '..'
• the relative pathname for the current directory is '.'
• consider './run_this_script' and '/bin/ls ../../suma_demo'

→ many commands can be used to return to the home directory (of "user")
• examples: cd, cd ~, cd ~user, cd $HOME, cd /home/user
• note the 2 special characters, '~' and '$'

→ while you work, keep your location within the directory tree in mind

3

→ class work:
• open a terminal window
• commands: cd, pwd, ls, ls -al
• use the "cd" command to go to the given directories

 e.g. for directory /usr/bin, use the command: cd /usr/bin
 once there, use the commands "pwd", "ls", and "ls -al"
 note that you can always return to the home directory via: cd

/ home/user AFNI_data1 .. AFNI_data1/afni

/usr/bin ~/abin ../../user/../user/../user

• first example (starting with the '/'directory), use the commands:

cd /

pwd

ls

ls -al

4

• Running Programs
→ a program is something that gets "executed", or "run"
→ the first element of a command line is generally a program (followed by a space)
→ most shells are case sensitive when processing a command
→ command examples:

 /bin/ls $HOME ~/AFNI_data1

 count -digits 2 1 10

→ script: an interpreted program (interpreted by another program)
• e.g. shell script, javascript, perl script, afni startup script
• view the epi_r1_decon script: cat ~/AFNI_data1/ht03/epi_r1_decon

→ some commands: cd, pwd, echo, ls, wc, cat, less, nedit, man
 cd ~/AFNI_data2 - change directories
 wc s1.analyze_ht05 - word count
 cat s1.analyze_ht05 - concatenate (to terminal)
 less s1.analyze_ht05 - a text file perusal program
 gedit s1.analyze_ht05 - a GNU text editor
 man wc - an online manual (runs in less mode)

• basic keystrokes for less (and man): Enter, Space, b, g, G, h, q

5

• The Shell
→ command interpreter (case and syntax sensitive)
→ examples: tcsh, csh, sh, bash, ksh, zsh, wish, tclsh, rsh, ssh
→ command: echo $SHELL
→ the T-shell: /bin/tcsh

• an enhanced C-shell (csh), which has C programming style syntax

• Command Line Processing (simplified outline):
1) evaluate special characters, such as: ~ $ & * ? \ ' " ` |
2) decide which program to execute (more on this later)

• pathname, alias, shell command, search the $PATH
3) execute appropriate program, passing to it the parameter list
4) save the execution status in the $status variable (0 is considered success)
→ command: ls $HOME '$pickle'
→ tcsh has automatic filename completion using the Tab key

• type "ls suma" and hit the Tab key, watch what happens, and hit Enter
• type "ls AF" and hit the Tab key, note what happens

6

• Special Characters

~ : the current user's home directory (e.g. /home/user), same as $HOME
$: used to access a variable (e.g. $home)
& : used to put a command in the background (e.g. afni &)
* : wildcard, matching zero or more characters (e.g. ls AFNI_d*)
? : wildcard, matching exactly one character (e.g. ls AFNI_data?)
\ : command line continuation (must be the last character on the line)
' : the shell will not evaluate special characters contained within these quotes

 (e.g. echo '$HOME'  will output $HOME, not /home/user)
 (e.g. 3dbucket -prefix small_func 'func+orig[0,7..10,17]')
" : the shell will evaluate $variables and `commands` contained within these

 (e.g. echo "[*] my home dir is $HOME")
 (e.g. echo "the numbers are 'count -digits 2 7 12'")

` : execute the command contained within these quotes, and replace the quoted
 part with the output of the contained command

 (e.g. echo "the numbers are `count -digits 2 7 12`")

7

• Command Types
→ the shell must decide what type of command it has:

• pathname for a program: execute that program
• alias: apply any alias(es) then start over (decide on which program to run)
• shell command: part of the /bin/tcsh program
• check the $PATH directories for the program

→ consider the commands:
/bin/ls AFNI_data1/afni

ls AFNI_data1/afni

cd AFNI_data1/afni

wc ~/AFNI_data1/afni/ideal_r1.1D

→ the "which" command shows where the shell gets a command from:
which ls which cd which wc

• The PATH Variable
→ a list of directories to be searched for a given program to be run from
→ the $path and $PATH variables are identical, but are represented differently
→ commands: echo $PATH

echo $path

cat ~/.cshrc

8

• Shell Variables
→ shell variables are variables that are stored in, and affect the shell
→ all variables are stored as strings (or as arrays of strings)
→ a variable is accessed via the '$' character
→ the 'echo' command: echo the line after processing any special characters

• command: echo my home dir, $HOME, holds ~/*
→ the 'set' command: set or assign values to one or more variables

• without arguments: 'set' displays all variables, along with any values
• 'set' takes a list of variables to set, possibly with values
• consider the commands:

set food
echo $food
set food = pickle
echo $food
set food eat = chocolate donut (emphasis: food eat = chocolate donut)
set
set food = eat chocolate donut
set food = "eat chocolate donut"
echo $food

9

→ variables can be assigned the result of a numerical computation using the '@'
command, however only integer arithmetic is allowed
• commands: set value1 = 17

 @ value2 = $value1 * 2 + 6

 echo value2 = $value2

• Array Variables
→ array variables are set using ()
→ consider the commands:

set stuff = (11 12 13 seven 15)
echo $stuff
echo $stuff[1]
echo $stuff[2-4]
echo $stuff[8]
set stuff = (hi $stuff $food)
echo $stuff
echo $path
cat ~/.cshrc

10

• Environment Variables

→ similar to shell variables, but their values will propagate to children shells
→ by convention, these variables are all upper-case (though it is not required)
→ similarly, shell variables are generally all lower-case
→ set environment variables using "setenv" (as opposed to the "set" command)
→ without any parameters, the "setenv" command will display all variables
→ the "setenv" command will only set or assign one variable at a time
→ the format for the command to set a value is (without any '=' sign):

setenv VARIABLE value

• commands:
setenv MY_NAME Elvis

echo $MY_NAME

echo $path

echo $PATH

echo $HOME

setenv

11

• Wildcards
→ used for shell-attempted filename matching
→ special characters for wildcards:

*, ?, [,], ^

* : matches any string of zero or more characters
 (special case: a lone * will not match files starting with '.')
? : matches exactly one character
[] : matches any single character within the square brackets
[^] : matches any single character EXCEPT for those within the brackets

→ commands (run from the ~/AFNI_data1/SPGR_anat directory):
ls
ls *
ls -a
ls I.*
ls I.04?
ls I.0[123]*
ls I.0[^123]*
echo I.0[^123]*

12

• Shell Scripts
→ a text file, a sequence of shell commands
→ the '\' character can be used for line continuation (for readability)

• for that purpose, it must be the last character on the line (including spaces)
→ executing shell scripts, 3 methods:

1) ./filename : (safest) execute according to the top "#!program"
 if no such line, usually executed via bash (a potential programming error)
 the file must have execute permissions (see 'ls -l')

2) tcsh filename : execute as t-shell commands
3) source filename : execute using current shell

 affects current environment
 this method should be used only when that is the intention (e.g. .cshrc)

→ consider ~/AFNI_data2/s1.afni_proc.command
→ consider ~/AFNI_data2/s1.analyze_ht05
→ use the command "gedit my.script" to create a script with a few commands

echo hi, I am in directory $cwd
ls -a
cd $HOME/AFNI_data1
ls -al

→ run the script using the command: tcsh my.script

13

• Some Shell Commands (handled by the shell)

cd : change working directory
echo : echo command line to the terminal window
pwd : display the present working directory
set : set variables or assign string values to variables
@ : set a variable to the results of an integral computation
alias : display or create an alias

 (e.g. alias hi 'echo hello there')
bg : put a process in the background (usually after ctrl-z)
fg : put a process in the foreground
exit : terminate the shell
setenv : set environment variables
source : execute a script within the current shell environment

• special keystrokes (to use while a process is running)
ctrl-c : send an interrupt signal to the current process
ctrl-z : send a suspend signal to the current process

14

• More Shell Commands: basic flow control
→ commands: if, else, endif, while, end, foreach

if ($user == "elvis") then
 echo 'the king lives'
endif

set value = 5
set fact = 1
while ($value > 0)

 @ fact = $fact * $value
 @ value -= 1
end
echo 5 factorial = $fact

foreach value (1 2 3 four eight 11)
 echo the current value is $value
end

foreach file (I.*3)
 ls -l $file
end

15

• Pipes and Redirection
> : redirect program output (stdout) to a file

 e.g. waver -help > waver.help
 waver -pickle > waver.help

>& : redirect all output (both stdout and stderr) to a file
 e.g. waver -pickle >& waver.pickle
 e.g. tcsh my.script >& script.output

>> : append program output to a file

| : pipe standard output to the input of another program
 e.g. 3dDeconvolve -help | less

|& : include stderr in the pipe
 e.g. tcsh my.big.script |& tee script.output

• run the script
• send all output to the tee program
• the tee program duplicates the input, sending the output to

both the terminal and the given file (script.output)
• you can see the output, but it is also stored for future analysis

16

• Some OS Commands
 ls : list the contents of a directory
* cat : concatenate files to the terminal (print them to the screen)
* more : a file perusal program - view files one page at a time
* less : a better file perusal program (type less, get more)
 man : on-line manuals for many OS commands (and library functions)

 - this uses a "less" interface to display the information
 - e.g. consider man on : ls, less, man, tcsh, afni

* head : display the top lines of a file (default = 10)
 - e.g. 3dDeconvolve -help | head -25

* tail : display the bottom lines of a file (default = 10)
 - e.g. tail ideal_r1.1D

* wc : word count - count characters, words and lines (of a file)
 cp : copy files and directories to a new location
 mv : rename a file, or move files and direcotories
 rm : BE CAREFUL - remove files and/or directories (no recovery)

 - e.g. rm junk.file
 - e.g. rm -r bad.directory

* denotes a 'filter' program, which can take input from a file or from stdin

17

* grep : print lines from a file that match the given pattern
 e.g. grep path ~/.cshrc
 e.g. ls ~/abin | grep -i vol
 e.g. from the output of "3dVol2Surf -help" show lines which

 contain 'surf', but not 'surface', then remove duplicates:

3dVol2Surf -help | grep surf | grep -v surface | sort | uniq

• Some Special Files (in the home directory)
.cshrc : c-shell startup file ("csh run commands")

 set aliases
 adjust the path
 set shell and environment variables

.afnirc : AFNI startup file

.sumarc : suma startup file

.login : commands run at the start of a login shell (e.g. a terminal window)

.logout : commands run before exiting a login shell

.tcshrc : t-shell startup file (if it does not exist, the .cshrc file will be used)

